Capsaicin-induced Thermal Enhancement on Target Tissues in Hyperthermia

نویسندگان

  • Peng Zeng
  • Zhong-Shan Deng
  • Jing Liu
چکیده

Local thermal enhancement in target tissue is of great interest in tumor hyperthermia. In this study, we proposed a brand-new thermal enhancement protocol for tumor hyperthermia using heat generated from thermogenesis evoked by capsaicin, which can safely deliver a totally localized heating to target tissue. A healthy male volunteer was recruited, whose partial areas of the dorsum of hand and posterior aspect of forearm were smeared with 1% (w/w) capsaicin solution, to determine the increase of thermogenesis in human body. In addition, animal experiments on healthy Kunming (KM) mice (20-22g) were performed to test the feasibility and efficacy of capsaicin-induced thermal enhancement. These KM mice were first locally smeared with, subcutaneous or intraperitoneal injected of the same capsaicin solution, and then heated by near infrared laser. Preliminary experiments on the volunteer showed an effective temperature increase in the skin area. Animal experiments indicated that distinct thermal enhancement in heating effect, and that the thermal enhancement induced by intraperitoneal injection of capsaicin is more obvious than the other two ways. Thus capsaicin can be used as a potential therapeutic adjuvant to locally enhance heating effects in target tissue during tumor hyperthermia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study of thermal dynamics of gold nanoparticles in laser-induced hyperthermia therapy

Damage of the normal tissue is a serious concenrn in cancer treatment. Hyperthermia by laserhas been considered as a safe cancer treatments methods with lower harmful effects on normaltissues. Using nanoparticles in cancer treatment has improved laser therapy, which is based ona selective cell targeting method to localize cell damages. Metallic nanoparticles such as gold,silver, and copper have...

متن کامل

Antihyperalgesic effects of (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats.

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is excl...

متن کامل

Enhancement of thermal response of normal and malignant tissues by Corynebacterium parvum.

Further studies were carried out on the combined effects of Corynebacterium parvum and hyperthermia on animal tissues and cultured Chinese hamster ovary cells. Experimental animals were C3Hf/Sed mice derived from our defined flora mouse colony. Tumors were eighth-generation isotransplants of a spontaneous fibrosarcoma, FSa-II. Hyperthermia was given by immersing the mouse foot or culture flasks...

متن کامل

Clinical use of thermal enhancement and therapeutic gain for hyperthermia combined with radiation or drugs.

Values for thermal enhancement and therapeutic gain are useful for deciding future directions of hyperthermia combined with other cancer therapy modalities. Evidence of thermal enhancement of effects on normal tissues is important as it indicates the need for dose modification. Specific values cannot be used generally to determine the degree of dose modification for clinical applications. A ran...

متن کامل

Evaluation of a Novel Thermobrachytherapy Seed for Concurrent Administration of Brachytherapy and Magnetically Mediated Hyperthermia in Treatment of Solid Tumors

Concurrent hyperthermia and radiation therapy in treatment of cancer show a strong evidence of a synergistic enhancement. We designed a new self-regulating Thermo-Brachytherapy seed, which serves as a source of both radiation and heat for concurrent administration of brachytherapy and hyperthermia. The Thermo-Brachytherapy seed has a core of ferromagnetic material which produces heat when subje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011